Town of Perinton Conservation Board

High Acres Landfill & Recycling Center 2022 Annual Update

April 4, 2023

Jeff Richardson | Waste Management of NY, LLC Tom Hasek | Waste Management of NY, LLC David Cross | Waste Management of NY, LLC Nicole Simonetti | Waste Management of NY, LLC Luann Meyer | Barton & Loguidice, D.P.C. Steven Wilsey | GHD Services, Inc. Bryan Szalda | GHD Services, Inc.

Facility Regulatory Permits/Approvals

- 6 NYCRR Part 360 Solid Waste Management Facilities (DEC)
- 6 NYCRR Part 200 Prevention and Control of Air Contamination and Air Pollution (DEC)
- ▶ 6 NYCRR Part 612, 613, 614 Petroleum Storage and Handling (DEC)
- 40 CFR Part 61 National Emissions Standards for Hazardous Air Pollutants (DEC)
- Town of Perinton Special Use Permit
- Town of Macedon Special Use Permit
- State Pollutant Discharge Elimination System Permit (SPDES) (DEC)
- Sewer Use Permit (Monroe County Department of Environmental Services

 Division of Pure Waters)
- Air Permits 6 NYCRR Part 201 and USEPA Title V
- Freshwater Wetlands Permit and 401 Water Quality Certification (DEC)
- Section 404 Wetland Permit (U.S. Army Corps of Engineers)
- Full Time NYSDEC on-site monitor who oversees the operation and provides a daily inspection report. Daily reports submitted to Towns).

47-15-1A (1/98)-q (Automated 6/07)								
•		NEW YORK	DEPARTMENT OF E	NVIRO	NMENTAL DOUS MAT	CONSER ERIALS	VATION	
-	50		6 NYCRF	Part	360-2	DECT		
(For u	ise at Mixe	ed Solid Waste L	andfills, Industrial /	Comme	rcial Waste	e Monofil	s, or Ash Residu	e Monofills)
FACILITY NAM High Acres La	ME: andfill	LOCATION: Perinton/T) Mor	aroe(C)	FACIL 28 S 1	LITY ID#: 32		DATE: 02/09/23	TIME:
INSPECTOR'S	S NAME:	CODE:	PERSONS INTERV	EWED	~		02/07/25	
Dave Kay REGION	WEATHE	R CONDITIONS:	Pat O'Dell		DE	C PERMI	TNUMBER	
8	CL,rain;	30's-40's°F; W: 5-	10 ESE,E,SE		8	- 9908 - 0	0162 / 00032	
SHEET 1 OF	2 🛛	DNTINUATION SH IVES IT NO	IEET		PA	RT(S) 36 attack	D- ned	
Violations and/or M	s of Part 360 are ultiple Violations	Subject to Applicable Civil, May be Described on the A	Administrative, and Criminal Sa Bached Continuation Sheet. Th merked NI initiate No Inserved	nctions Set F is form is a m	orth in ECL Article econd of condition	ie 71 and as Ap is which are ob	propriate, the Clean Water a served in the field at the time	and Air Acts. Addition of inspection
X P/	ART 360 PE	RMIT D ORDER	ON CONSENT	EGISTER		XEMPT C	COMPLAINT	CLOSED
	FACILITY	MANAGEMENT	is a their and management		this second a	ma 260-17/1	(1) (b) 3654 9(b) (6)	
	2. Incomin facility	ng waste is monitored by 360-1.14(e) (1) minusil ow Level Radioa	a control program for unautho	fized waste	and solid waste	material acce	pted are approved for ma	nagement at the
	b. Cont c. Depa	rol Program, 360-1,14(e) Intment Approved Facility	(1) for Specific Wastes, 360-1.14	(7)				
	e. Who f. Lead	Liquids 360-2.17 (k) ie Tires 360-2.17(v) Acid Batteries 360-2.17 (w)					
	 Operation Main Adec 	or maintains and operate tenance of Facility Comp suate Equipment, 360-1,1	s facility components and equi onents/Site Grading, 360-1.14 4(f) (2)	pment in ac (f) (1); 360-	2.17 (h), (u)	he permit and	their intended use.	
	 Operation Characteristic Characteristic	onal Records are availab thorized Solid Waste Re	le where required: cords. 360-1.14(1) (1) 1.14(1) (2)					
	c. Perm d. Moni	t Application Records. 3 toring Records. 360-1.14	60-1.14(I) (3) (I) (4)					
	f. Fill P g. Prim	to operator Records. 360 trogression Records. 360 ary Leachate Collection a	-1.14(u) (1) -2.9 (e) ind Removal System Logs 260	-2.9(j) (3)				
	h. Asbe I. Rano OPERATIV	stos Waste Site Plan 360 Iom waste collection vehi IN CONTROL	cle inspection records 260-2.1	7(q)				
	5. Solid w 6. Dust is 7. On-21	aste, including blowing it effectively controlled and	ter, is sufficiently confined and does not constitute an offsite revented or controlled and	controlled. nuisance. 3	360-1.14(j) 60-1.14(k)	vented 360-*	140)	
	8. Odors a	are effectively controlled	so that they do not constitute a	nulsance.	360-1.14(m)		~	
	5. Sold w 10. Leacha ACCESS	te is minimized through a	rainage control or other mean	s and is pre	vented from ent	ering surface	waters.360-1.14(b) (2); 36	0-2.17(q)
	12. On-site WASTE H/	roads are passable. 360 ANDLING	High continuously controlled by t -1.14(n); 360-2.17(s)	encing, gate	es signs, natural	barners, or o	ner suitable means. 360-1	.14(0)*
	13. Solid W workin 14. Lift hek	laste is spread in layers 2 g face area is the smalles sht does not exceed 10 fe	t feet or less in thickness, prop t practicable. 360-2.17(b) (1) et. slope is at least 4 percent.	er compact and no more	ion is achieved i e than 33 percer	with 3 passes nt. and wastes	of appropriately sized equ are placed and graded in	ipment and the accordance with 1
8	progres 15. Solid w a. Stab	ision plan 360-2.17(b) (2) aste preparation measure lized/dewatered siedges	es and/or precautions are prov 360-2,17(n)	ided:				
	b. Asbe c. Tank	stos Waste 360-2.17 (p) s 360-2.17(r)	(3)					
	16. Daily cr odors, I	over material is suitable in blowing litter, and scaven	quality, of proper compacted ging 360-2.17 (c)	thickness, a	and is applied an	nd maintained	where and when required	to control vectors
	18. Final co MONITORI	over system material is su NG	itable in quality, of proper con	pacted thic	kness, and is ap	plied and ma	intained.360-2.17 (e)	2.17 (0)
	20. Decom OTHER	position gasses are moni	2.17 (a); 360-2.11(a) (b) (V); (tored and controlled 360-2.17)	f); 360-8.3 ((c)			
	On Conshu	ation sheet identity any (ther violations					
Son	X	-	TH	ereby Ackn	owledge receip	ot of the Faci	Ity Copy of this report	
14	aut action		Pla	ise Print	NotiCar	and and	DK.	
			010	nature	not negut		<u></u>	-
				/				
			1					

High Acres Landfill & Recycling Center Complex

- Organics Composting
 - St. John Fisher, U of R, Nazareth
- Yard Waste Compost facility
- 9.6-MW Onsite Renewable Energy Facility
 - 10,000 homes powered by facility
- 250 Acres Award Winning Nature Area includes 4 miles of hiking trails
 - RIT Outdoor Classroom
 - Wildlife Habitat Council Certifications
- First Responders and Law Enforcement Training Facilities
- Residential Drop-off FacilityHigh Acres Sports Complex

Operations Update

- Landfill permitted footprint: 320.4 acres
- 3,500 tons per day- Permitted Capacity
- No aged waste placed in Perinton in 2022
- Remaining Projected Site Life 28 years (2050)

Landfill (in Town of Perinton) Airspace S	ummary as of Dec 31st, 2022
Total Permitted Capacity (CY)	30,823,531
Airspace Consumed (CY)	23,250,381
Airspace Remaining (CY)	7,529,338

2022 Operations

2022 Operations		
Tons of solid waste managed	938,151	-
Tons of solid waste managed by rail	520,530	-
Tons of sludge managed	37,333	3.47%
Tons of yard waste managed	14,143	
Tons of organics managed	356.71	
Gallons of Leachate collected and discharged to MCPOTW	41,575,027	
Total Landfill Gas Flared (SCFM)	2,095,910 SCFM	
Landfill gas beneficially used to produce green energy (SCFM)	1,566,241 SCFM	

VOLUME (tons)	2022	MSW	AOC	TOTAL
High Acros NVSDEC	Q1	208,923	51,098	260,021
Permitted Capacity;	Q2	222,568	54,517	277,085
MSW- 3,500 TPD x 307 days= 1.074.500	Q3	230,862	49,288	280,150
AOC- 1.050 TPD x 307	Q4	275,797	49,218	325,015
days= <u>322,350</u>	TOTAL	<u>938,151</u>	<u>204,121</u>	<u>1,142,271</u>

520,530 tons MSW via Rail

Landfill Development History

	Landfill Area Acreages			Cell Designation		
Landfill Area	Baseliner	Overliner	Total	(refer to Fig. 1)	Year Constructed	
Closed Landfill Area	-	-	-		4072	
	-	-	-	N/A	1972	
Western Expansion (WEX)	68.1	N/A	68.1	1	1994	
• • • • • • •				2	1995	
				3	1996	
				4	1997	
				5	1999	
				6	1998	
				7	2000	
				8/9	2001	
Parkway Expansion	7.5	12.6	20.1	6-OL	2002	
				7-0L	2002	
Phase I				8/9-0/L	2003	
				10, 10-OL	2008	
Parkway Expansion	42 (2019	
Phase II	42.0	15.4	58.0	11, 11-OL	Currently operating in	
				,	Cells 11 and 11-OL	
Parkway Expansion Phase					2017-2022	
Parkway Expansion Phase	47.9	4.6	52.5	12, 13, 13-01	Currently operating in	
III (Town of Perinton)			52.5	, ., ., .,		
					CEIIS IZ, IJ, IJUL	

Liner Construction

Surface Emissions Monitoring Methodology

Readings Above 500 ppm Threshold

- NSPS procedures followed
 - Location is recorded and flagged, site personnel notified
 - Each location is evaluated and corrective action program is implemented
- Follow-up monitoring conducted to confirm remedy is successful
 - Within 10 days of initial exceedance
 - 1 month after initial exceedance

Readings Above 200 ppm Threshold (Perinton Special Use Permit Requirement)

- 2.5x more stringent than the regulatory standard
- Same procedures as above followed except only 1 successful follow-up reading required
 - Within 1 month after initial exceedance

Monthly Cover Integrity Program

Surface inspected monthly and corrective actions made as necessary

Surface Emissions Monitoring Methodology

Monitoring in Accordance with Work Plan and New Source Performance Standards (NSPS)

- Monitoring Path = 30-meter serpentine path beginning at perimeter of the landfill
- Extension probe held at 2 to 4 inches above surface of the landfill while traversing
 - Readings logged into SEM5000 instrument (date, time, reading and GPS coordinates logged)

- Surface penetrations such as landfill gas wells, risers, or other collection components
- Areas with distressed vegetation
- Areas with cracks/seeps in the cover
- In accordance with Federal regulations and site permit conditions, if unsafe conditions are encountered Technician evaluates options to safely conduct the monitoring. If a safe option cannot be established, such areas are highlighted in the reports and areas are evaluated during future events. Examples of such areas include:
 - Active and construction areas that have large trucks and equipment operating
 - Steep slopes with exposed geomembrane liner (slip /trip/ fall) and/or with problematic weather conditions
- Regulations do not require monitoring of areas with waste less than 5 years old (or within 2 years of an area being closed or reaching final grade) in accordance with NSPS rules
 - > On occasion areas not required to be monitored by regulation may be monitored.

15

Trend of Number of Surface Emission Monitoring Detections >200ppm

Summary of Surface Monitoring Results

18

Summary of Surface Monitoring Results

- Purpose of surface emissions monitoring program is to evaluate the effectiveness of the gas collection and cover systems and provide ongoing corrective action/ remedy programs
- As long as corrective measures are implemented within the required timeframes, the facility is in compliance with Work Plan (local), Title V Permit (state) and NSPS rules (federal)
- All results are reported to NYSDEC and Town on a quarterly basis

Based on our review of records over the last 5 years, all follow up procedures, including corrective action and follow up monitoring, were completed within the required timeframes, and in many cases corrective actions were implemented well before required (often times within the same day).

High Acres H₂S Monitoring Program

- Monitoring Instrument: Acrulog PPB
- Detection limit: 3 parts per billion (ppb)
- Instrument Range: 3 2,000 ppb
- Reading taken and logged every 10 minutes
 - 3-minute sampling period
 - 7-minute zero / purge period

CAD File: C. UKNikepes FallsPropria/86211221011Digite_DesignACAD 2017Figure(2021-02-8804/1023011-0221038-F8020.exg

Summary of H₂S Monitoring Results

Original Work Plan dated March 2, 2018

Data Collection Period: March 6, 2018 - June 9, 2019

- Continuous data collection at all 5 stations
- Reports provided every week initially and every 2 weeks thereafter

Revised Work Plan dated April 30, 2019

Data Collection Period: July 9, 2019 - Present

- Data collected quarterly at 4 perimeter stations for 1 week during surface scan
- Quarterly reports provided
- Continuous data collection at School during school year

Monthly reports provided

Since March 6, 2018, there have been no exceedances of the 1-hour standard for H_2S attributable to the landfill.

Station Name	# Readings Collected	% Non-Detections (% of Total Readings)
West Monitoring Station (WMS)	114,132	99.9
North Monitoring Station (NMS)	210,457	99.6
East Monitoring Station (EMS)	112,382	99.7
South Monitoring Station (SMS)	139,239	99.6
School Monitoring Station (School)	221,720	99.4
Grand Totals	797,930	99.6

High Acres Gas System Collection, Conveyance, Cover, Control (4C's)

GCCS Plan (GHD Plan -updated 10/12/18)

- Roadmap for all landfill gas system development criteria for all design/operational rationale (current conditions through site closure)
- Gas Emissions Model (Land GEM) provide information for gas generation by year, peek flow, system sizing, gas well spacings (ROI), infrastructure needs, operational considerations.
- Site monitoring, testing, and reporting.
 - * USEPA developed monitoring procedures to determine active LFG collection system's effectiveness

4C's Components

Collection

- Vertical Gas Wells (Slip Form Style)
- Horizontal Gas Collectors
- Base Grid System
- Agru Under Liner Collectors (Under Temp Cap Areas)

Conveyance

- Headers
- Laterals/Sub Headers
- Blowers
- Infrastructure

<u>Cover</u>

- Soils
- AOC's
- EPI Cover System
- Exposed Geomembranes
- Final Cover System

Controls

- Enclosed Flares
- Open Flare
- Gas-To-Energy Plant

Gas Collection Existing Systems

Landfill Horizontal Gas Collectors

SECTION B-B'

Landfill Gas Well Field Data Management

Landfill Gas Infrastructure - Control

Landfill Gas Infrastructure - Cover

Landfill Gas Infrastructure - Cover EPI EnviroCover Membrane Systems

20-acre Temp Cap Completed- *December 2022*

2022 Landfill Gas Summary

Collection/Conveyance

- Approximately 393 gas collection vertical wells
 - > 340 vertical, 53 horizontal
- > 30 header locations monitored weekly and 105 wells read at least twice per month
- Miles of horizontal gas collects
- Miles of laterals, vacuum lines, headers

2022 Landfill Gas Flow Summary

Onsite Odor Management: NYSDEC Approved- a proprietary blend of plant-based oils, natural extracts, trace elements, fragrances, scents, and surfactants.

NYSDEC 24-hr Notification/Verification System

Third party company of trained and certified inspectors

- 24-hour service, trained odor investigators, provides a convenient, rapid and actionable method of investigating and corroborating/validating reported concerns
- Responders trained in investigation techniques using n-Butanol reference scale (measure of odor intensity)
- As part of the odor investigation, temperature, wind strength and direction, precipitation, and cloud cover are recorded
- Conducts two types of investigations related to odors:

1.) <u>Routine monitoring-</u>surveying of surrounding roads/neighborhoods through the community conducted 2x/day- 7days/week (AM/PM), measuring the intensity and extent of any odor detected

2.) <u>Hotline Response</u> - Towpath also responds and investigates the intensity and extent of the odor calls received by the NYSDEC hotling₆

Barton & oguidice

To reach the hotline, call 585-453-2416.

ATTACHMENT A

Odor Science & Engineering Training

OS&E Odor Monitoring and Odor Complaint Investigation Techniques Course Outline

Introduction

- 1.0 The Properties of Odor
 - 1.1 Odor Concentration
 - 1.2 Odor Intensity
 - 1.3 Odor Character
 - 1.4 Hedonic Tone
- 2.0 Odor Measurement Methodology
 - 2.1 Source Emission Sampling
 - 2.2 Measurement of Odor Concentration by Dynamic Dilution Olfactometry
 - 2.3 Measurement of Ambient Odor Concentrations by Scentometer/Nasal Ranger
 - 2.4 Measurement of Odor Intensity
 - 2.5 Instrumental Analysis (Jerome H₂S Analyzer)
- 3.0 Meteorological Factors Affecting Odor Dispersion
 - 3.1 Atmospheric Stability
 - 3.2 Influence of Local Terrain
 - 3.3 Source Characteristics
- 4.0 Odor Monitoring/Complaint Response Protocol
 - 4.1 Odor Monitoring Procedures and Forms
 - 4.2 Odor Complaint Investigation Procedures and Forms
- 5.0 Olfactory Screening of Course Participants
- 6.0 Training on the use of the n-butanol Odor Intensity Scale
- 7.0 Field Training

Odor Science & Engineering, Inc. 105 Filley Street Bloomfield, CT 06002 Phone (860) 243-9380 Fax (860) 243-9431 www.odorscience.com

NYSDEC 24-hr Notification/Verification System

Third party company of trained and certified inspectors

Level (0-8)ASTM E544-100.5 - 1Very Faint: An odor that would ordinarily not be noticed by the average person, but could be detected by the experienced inspector or a hypersensitive individual. Faint: An odor so weak that the average person might detect if his attentions are called to it, but that would not otherwise attract his attention. Distinct, Easily Noticeable: An odor of moderate intensity that would be readily detected and might be represented with difference
0.5 - 1Very Faint: An odor that would ordinarily not be noticed by the average person, but could be detected by the experienced inspector or a hypersensitive individual.1-2Faint: An odor so weak that the average person might detect if his attentions are called to it, but that would not otherwise attract his attention.Distinct, Easily Noticeable: An odor of moderate intensity that
Faint: An odor so weak that the average person might detect if 1-2 his attentions are called to it, but that would not otherwise attract his attention. Distinct, Easily Noticeable: An odor of moderate intensity that
Distinct, Easily Noticeable: An odor of moderate intensity that
(A possible nuisance in inhabited areas.)
4 and higher Strong, Decided: An odor that would force itself upon the attention and that might make the air very unpleasant (a probable nuisance, if found in inhabited areas.)

NYSDEC 24-hr Notification/Verification System

Third party company of trained and certified inspectors

2022 NYSDEC Odor Hotline Statistics (1/1/22-12/31/22)

732	Total number of calls				
128	Total number of individual callers				
46%	Percent of Investigated Hotline Calls (329) with no odor detected				
53%	Percent of Investigated Hotline Calls with Confirmed Off-Site landfill Odors (376) Scaled at 0.5, 1				
1%	Percent of Investigated Hotline Calls with Confirmed Off-Site landfill Odors (7) Scaled at 1.5, 2				
40%	Percent of Hotline Calls (295) received from Magnolia Manor				
78%	Calls represented by top 20 callers				
54%	Calls represented by top individual caller w/ 411 calls	B	artoŗ	1.	
		X	ogui	dic	e

Four C's

- Control Devices (Flares/Engines)
- Convenance
- Collection
- Cover

Control Devices-

(Guarantee available vacuum with redundancy)

month

- 3516 Powerplant
- 3520 Powerplant
- Enclosed Flare 1
- Enclosed Flare 2
- Open Flare

Surface Emissions Scans

- 3rd party contractor walks the facility in a serpentine pattern 4x/year scanning the surface of the landfill for potential gas emissions
- Scan at 2.5x regulatory requirement or 200ppm vs 500ppm
- No regulatory violations

Perimeter H2S Monitoring

- H2S monitoring stations at 5 locations, North, South, East, West, and Northside Dudley School
- Since 2018, more than 1,000,000 samples with no landfill-related exceedances

• All data logged into LGMS

• 400 +- Vertical Wells

 Demonstrates negative pressure on entire waste mass (Radius of Influence)

Well Field (Collection and Conveyance)

• Miles of horizontals installed every 20ft

• Well points monitored either 1x or 2x per

vertically and 100ft horizontally

NYSDEC Hotline

- 3rd party contractor certified and trained in the use of the Nbutanol scale (Towpath)
- Trained in types of odor ex: garbage, gas, wetland, and other
- 2022- 99% of any confirmed odors were not LFG related

Daily Perimeter Odor Monitoring

- 2x/day Towpath drives a predetermined route around the entire vicinity of the facility to evaluate the presence of odors
- Towpath records weather conditions, route of travel and whether odors do or do not exist
- In the event an odor is present, Towpath records the type of odor, strength and location
- 2022- 99% of any confirmed odors were not LFG related

NYSDEC Monitor

- Full-time NYSDEC monitor issues the facility a daily report card
- Monitor also drives perimeter of the facility and adjacent neighborhoods to evaluate odors/LFG NYSDEC findings consistent with Towpaths

To reach the hotline, call 585-453-2416.

43

Environmental Monitoring Program Summary

Outline:

- Introductions
- Environmental Monitoring Program
- Monitoring Results Summary

Third Party Environmental Monitoring - Sampling, Analysis, and Reporting

GEI Consultants	Barton & Loguidice, Inc.	Eurofins - TestAmerica Buffalo
Manages landfill environmental monitoring program and reporting	Conducts field sampling for environmental monitoring program	NYSDOH ELAP certified laboratory in accordance with the NYSDEC's ASP – Laboratory analysis

EMP (cont'd): Media Sampled/Monitored Quarterly

- Each quarter we collect over 50 surface water and groundwater samples and analyze for up to 150 constituents.
- Groundwater
 - ▶ 50 Total wells
 - 23 wells (Western/Phase I/II Parkway Area)
 - 12 wells (Phase II Parkway Area)
 - 15 wells plus hydraulic monitoring of 28 piezometers (Closed Landfill Area)
 - On-site groundwater suppression systems
- Surface Water/Sediment
 - 3 locations (Off-site stream)
 - 5 On-site detention ponds

EMP (cont'd): Media Sampled/Monitored

- Landfill Systems
 - Leachate
 - > 13 Leachate samples at individual landfill cells and 1 Closed landfill
 - > 13 samples of liquid in secondary systems
- Landfill Gas Monitoring (in-situ)
 - 23 perimeter locations

Sampling Location Plan

Environmental Monitoring Summary/Conclusions

- 2022 to date Sampling and analysis indicates active landfill operations (Western and Parkway Landfill Areas) have not impacted groundwater or surface water flow or quality.
- Consistent with historic trends Groundwater monitoring at the Closed Landfill area identified landfill gas impacts at two well locations. Continues to be monitored and reported to the NYSDEC.
- Seasonal fluctuations or increasing trends in concentrations of chloride and sodium are attributed to roadway safety de-icing activities.
- Leachate conveyed to the Monroe County Pure Waters WWTP was in compliance with permit conditions.
- Explosive gas was not detected.

Landscape Plan - Interim Plan

Landscape Plan Status

- The landscaping efforts on the landfill are a <u>work in progress</u> and require continual monitoring and adjustments.
- The goal of creating a view of High Acres that is similar in <u>texture and feel of the surrounding topography</u> remains.
- The success of the <u>naturally occurring vegetation</u> (i.e, poplars and black locust trees, etc.) has been <u>very successful</u> and WM intends to encourage this type of growth.
- Minimal plantings will be completed over the next few years given the future fill progression and given the <u>success of the</u> <u>natural successional growth</u> versus installing new plantings.
- <u>Rotational mowing</u> continues to occur on the interim cover portions of the landfill to <u>break up the surface of the landfill</u> and <u>allow ground nesting birds to thrive</u>.

Landscape Plan - Current Conditions - Fall '22

Landscape Plan -Current Conditions

2022 HANA Wetland Monitoring

Figure 2: 2013 Aerial Photograph, Courtesy of GPSExpert

Photo 25: 08-24-2022; facing northeast from along the south limits of Area 3, near the existing pond.

Photo 26: 08-24-2022; facing southeast towards the wet meadow in the southeastern portion of Area 3.

Photo 27: 08-24-2022; facing northwest in the degraded cow pasture in the southeastern portion of Area 3.

Photo 31: 08-24-2022; facing northeast in the prairie buffer in the eastern portion of Area 3.

Photo 32: 08-24-2022; facing northwest along transect T2 in the north portion of Area 3.

Photo 33: 08-24-2022; facing west towards the northwestern portion of Area 3.

2022 HANA Wetland Remedial Efforts

- Herbivore-exclusion experiments
- Tree and shrub survivability surveys
- Continuation of experimental compost additions
- Removal of old tree tubes
- Monitoring of soil characteristics and microbes
- Hand-cutting of invasive plants
- Removed mature cattails seed heads
- Herbicide application
- Seeds dispersed on-site
- Continuation of RIT students' invasives species control, monitoring, and research

				2022 Herbic	ide Record			
		Product	Quantity		Dosage	Method of		Place of
Date	EPA #	Name	Used	Units	rate	Application	Target Organism	application
						Foliar		
						Backpack	Reed Canary	High Acres
6/16/2022	62719-324	Rodeo	12	fl OZ	1.5%	Spot Spray	Grass	Area 3
						Foliar		
		Accord				Backpack		High Acres
6/27/2022	62719-556	XRT II	30	fl OZ	2.0%	Spot Spray	swallowwort	Area 3
						Foliar		
		Garlon				Backpack	Purple	High Acres
7/27/2022	62719-37	3A	24	fl OZ	1.5%	Spot Spray	Loosestrife	Area 3
						Foliar		
						Backpack		High Acres
8/29/2022	62719-324	Rodeo	36	fl OZ	1.5%	Spot Spray	Phrag	Area 3
						Foliar		
						Backpack	Reed Canary	High Acres
10/25/2022	62719-324	Rodeo	20	fl OZ	1.5%	Spot Spray	Grass	Area 3

Summary of 2022 HANA Wetland Monitoring

- Constructed wetlands are developing toward a sustainable wetland system
 - Wetlands are already inhabited by numerous wildlife species
- Area 3 progressing toward meeting permit criteria with the wet meadow portion of Area 3 meeting permitted criteria
- 2023 remedial efforts will continue to pursue compliance with permit conditions

2022 Annual Noise Survey

6 NYCRR Part 360 Section 360-1.19 paragraph (j) states:

(j) The owner or operator of a facility must ensure that noise (other than that occurring during construction of the facility) resulting from equipment or operations at the facility does not exceed the following energy equivalent sound levels beyond the property line owned or controlled by the owner or operator of the facility at locations authorized for residential purposes:

Character of Community	Lea Energy Equiv	alent Sound Levels
within a one-mile radius of facility	7:00 a.m10:00 p.m.	<u>10:00 p.m7:00 a.m.</u>
Suburban	62 dBA	52 dBA

The L_{eq} is the equivalent steady-state sound level which contains the same acoustic energy as the time varying sound level during a one-hour period. It is not necessary that the measurements be taken over a full one-hour time interval, but sufficient measurements must be available to allow a valid extrapolation to a one-hour time interval.

Location	Noise Monitoring Location Description	Background Sound Source & Landfill Operations Audibility and Compliance
Loc. 1	North facility boundary in Town of Macedon, north of Packard Farm soil storage area, representing residences in agricultural-residential zoning.	Contributing sources include ambient traffic and environ- mental sources. Soil transport and placement activities were faintly perceptible. Landfill waste transport and placement equipment, materials handling operations, composting operations, and maintenance sources were indistinguishable. Construction soil excavation activities were indistinguishable. Facility sound levels are determined to be acceptable, referencing daytime and nighttime sound level limits for the suburban community character of Part 360 Paragraph 360- 1.19 (j).
Loc. 2	East facility boundary in Town of Macedon, along Quaker Road and North Wayneport Road, representing residences in agricultural-residential zoning.	Contributing sources include ambient traffic and environ- mental sources. Soil transport and placement activities were faintly perceptible. Landfill waste transport and placement equipment, materials handling operations, composting operations, and maintenance sources were faintly perceptible or imperceptible. Construction soil excavation activities were indistinguishable. Daytime and nighttime exceptions are attributed to be environmental and not due to facility sources. Facility sound levels are determined acceptable referencing daytime and nighttime sound level limits for the suburban community character of Part 360 Paragraph 360-1.19 (j).
Loc. 3	East facility boundary in Town of Macedon along North Wayneport Road, representing residences in agricultural-residential zoning.	Contributing sources include ambient traffic and environ- mental sources. Soil transport and placement activities were faintly perceptible. Landfill waste transport and placement equipment, materials handling operations, composting operations, and maintenance sources were faintly perceptible or imperceptible. Construction soil excavation activities were indistinguishable. Daytime and nighttime exceptions are attributed to be environmental and not due to facility sources.
		Facility sound levels are determined acceptable referencing daytime and nighttime sound level limits for the suburban community character of Part 360 Paragraph 360-1.19 (j)

Table 3 2022 Annual Sound Survey Findings and Noise Compliance Summary (cont.) Background Sound Source & Landfill Operations Noise Monitoring Location Audibility and Compliance Location Description Loc. 4 South facility boundary in Town of Contributing sources at the facility boundary include rail Macedon, representing residences to container unloading and transport operations, rail container truck pass-bys, and maintenance vehicle pass-bys, which south of rail vard and CSX rail line in caused exceptions. Landfill equipment and operations were manufacturing zoning. imperceptible or faintly perceptible. Construction activities were faintly perceptible or imperceptible. Nighttime exceptions are attributed to train pass-bys.. Sound levels received at nearest residences are predicted to be attenuated by 40 dBA due to distance, screening, and environmental propagation attenuation factors, and meet acceptable limits. Facility sound levels measured at the nearest residences are confirmed to be acceptable, referencing daytime and nighttime noise limits for the suburban community character of Part 360 Paragraph 360-1.19 (j). Loc. 5 South boundary in Town of Perinton, Contributing sources include power plant operations and south of power plant and CSX rail environmental sources. Sounds of landfill operations were indistinguishable. Sounds of waste hauler truck traffic on the line, representing residences in upper south site road were occasionally faintly perceptible. residential zoning. Construction activities were indistinguishable. Daytime and night exceptions are attributed to train pass-bys. Facility sound levels are determined to be acceptable referencing daytime and nighttime sound level limits for the suburban community character of Part 360 Paragraph 360-1.19 (j). Loc. 6 North facility boundary in Town of Contributing sources include highway traffic and environ-Macedon, along Macedon Center mental sources. Landfill waste transport and placement Road and north, representing equipment, materials handling operations, composting residences in residential zoning. operations, and maintenance sources were indistinguishable. Construction soil excavation activities were indistinguishable. Daytime and nighttime exceptions are attributed to be environmental and not due to facility sources. Facility sound levels are determined to be acceptable referencing daytime and nighttime sound level limits for the suburban community character of Part 360 Paragraph 360-1.19 (j).

CLOSURE / POST-CLOSURE COST SUMMARY

CLOSURE COSTS

Item	Units	Quantity	Unit Cost	Total
Final Cover Installation Remaining (see notes)	acres	190.9	\$170,345	\$32,518,778
Stormwater Management Features	acres	190.9	\$10,000	\$1,909,000
Groundwater / Surfacewater Monitoring	lump sum	1	\$154,842	\$154,842
Leachate Management	lump sum	1	\$62,259	\$62,259
Landfill Gas and Air	lump sum	1	\$140,837	\$140,837
Exit Closure Costs	lump sum	1	\$288,360	\$288,360
			TOTAL	\$35,074,077

TOTAL WITH 5% CONTINGENCY

\$36,827,781

POSTCLOSURE COSTS

Item		Total
Leachate Management		\$1,914,123
Landfill Gas Management		\$1,788,446
Operation & Maintenance		\$1,592,910
Groundwater / Surfacewater Monitoring		\$3,783,945
	TOTAL	\$9,079,425

TOTAL WITH 5% CONTINGENCY \$9,533,396

TOTAL FOR FINANCIAL ASSURANCE \$46,361,176

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Materials Management, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5411 I F: (585) 226-2909 www.dec.ny.gov

SENT VIA E-MAIL (dcross7@wm.com)

September 1, 2022

Closure/Post-Closure NYSDEC Approval

Mr. David Cross Waste Management of New York, LLC 425 Perinton Parkway Fairport, NY 14450

Dear Mr. Cross:

Re: Revised Closure and Post-Closure Cost Estimates High Acres Landfill, Perinton (T), Monroe (C)

The estimated total cost for closure of the landfill and post-closure care, which has increased to \$46,361,176, is hereby approved. Please provide the Department with an executed original surety bond rider or other form of financial assurance acceptable to the Department in the above amount along with an updated Standby Trust Agreement.

Should you have any questions, feel free to call me at (585) 226-5410 or e-mail mark.amann@dec.ny.gov.

Sincerely,

Mark Amany

Mark Amann, PE

Ec: G. MacLean – NYSDEC D. Kay – NYSDEC J. Richardson – WMNY

Community Outreach

Weekly and Quarterly Operational Updates-

learn more at <u>highacreslandfill.wm.com</u>

Open House- Thursday, August 3^{rd,} 3:00pm-7:00pm

Landfill Tour | Information Fair | Kids Games | Food | Prizes

Over the set of the s

High Acres Nature Area

2023 Environmental Innovation Award- Large Business - Zoo Society

In Closing

- High Acres remains in compliance with all local, state and federal permits.
- A review of the site's gas collection and control system, operating records, odor control programs, off-site H2S monitoring data, quarterly surface scans, DEC Hotline complaints and follow up data from a trained odor detection consultant, and DEC inspection reports, all indicate that the Landfill is operating in a manner that minimizes off site odors to the greatest extent practicable.
- NYSDEC continues to encourage the use of the Hotline as the preferred method of reporting odor notifications.
- WM remains vigilant in our evaluation and implementation of best management practices and technology to enhance operations.

Thank you

Jeff Richardson | Sr. District Manager | jrichard3@wm.com

https://highacreslandfill.wm.com/

